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Abstract. Minkowski valuations provide a systematic framework for quantifying different aspects of mor-
phology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the
cat’s retina in order to describe their morphological structure in a comprehensive way. We introduce the
framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they
can be used to characterize cells of different morphological categories. We also provide a comparison to a
Sholl analysis.

PACS. 07.05.Kf Data analysis: algorithms and implementation; data management – 87.19.La Neuroscience
– 02.40.Ft Convex sets and geometric inequalities

1 Introduction

Natural phenomena can be understood as causes and con-
sequences of a permanent interplay between geometry and
dynamics, or form and function [1,2]. The geometric char-
acteristics of natural objects, their distribution in space,
as well as the dimensionality of space constrain their dy-
namics and function. For instance, the proper operation
of a mammal’s heart depends on a suitable diffusion of
potentials and waves across the heart surface.

It is at the central nervous system that the interplay
between form and function becomes most complex. For
instance, the velocity of signal transmission in neuronal
fibers (i.e. dendrites and axons) depends on the width and
length of the fibers. Another example is as follows: neurons
are cells specialized to establish selective spatial connec-
tions. Given the constraints imposed by three-dimensional
space, they have to resort to the most diverse geometries
in order to form the required interconnections. They do
so in a dynamical way during the whole lifetime of an
individual.

As a consequence, morphological analyses of neuronal
cells very probably provide clues for understanding neu-
ral dynamics and function. Although a large number of
investigations have been directed at the neural anatomy
and geometry (e.g. [3–6]), so far only the taxonomy of
neuronal cells and shape abnormalities as subsidiary for
diagnosis have been investigated in depth. The study of
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the shape of neuronal cells with objective and mathemat-
ically well characterized morphometric descriptors is just
at its beginning (e.g. [7–10]).

In order to be useful tools, morphometric descriptors
should fulfill the following criteria: first, the extracted
quantitative features should obey simple transformation
rules, when the neuronal cell under investigation is subject
to elementary geometric transformations such as affine or
conformal transformations (in- and covariance). Second,
the obtained measurements should discriminate between
different classes of neuronal cells. Finally, it is important
that the estimated features allow for intuitive interpreta-
tions from the neuroscience point of view.

Because of their long tradition in modeling and image
analysis, mathematics, physics and engineering provide a
large number of concepts and measures that suggest them-
selves for studies in neuroscience and neuromorphometry.
A good example is entropy, which has been used in neuro-
science because of its close association with the concept of
information [11]. Other such measures include the fractal
dimension [12–14], lacunarity [15,16], percolation critical
density [2] and curvature [17]. Recently, concepts from In-
tegral Geometry and the (scalar) Minkowski shape func-
tionals, in particular, were employed to characterize the
geometry of ganglion cells from the cat’s retina [18,19]. For
two-dimensional data, the Minkowski shape functionals
comprise the volume, the area and the Euler characteristic
(see below for more information). They are particularly in-
teresting because they meet the criteria mentioned above:
they are invariant under rigid body transformations, seem
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Fig. 1. Three toy examples with their curvature cen-
troids (points) and ellipses visualizing the second-rank tensors.
Point styles: red filled square: p0; blue open square: p1; yellow
cross: p2. The ellipses carry information on the Minkowski ten-
sors; for more information see the main text. Ellipse at the left
hand side: V 0,2

1 ; red (medium grey) ellipse: V 2,0
0 ; blue (dark

grey) ellipse: V 2,0
1 ; yellow (light grey) ellipse: V 2,0

2 .

to have good discriminative power [18], and can be squared
with basic concepts from neuroscience. Moreover, they can
easily be implemented: usually, the original data are fil-
tered with methods known from MIA (Morphological Im-
age Analysis, see below for the details of our method; for
an introduction into MIA consult [20]). This preprocess-
ing introduces a free parameter, which can later be varied
in order to probe the morphology at different scales. In
previous works, the singular points (branching and termi-
nating points) [19] or the whole cell outline [18] are di-
lated (blown up, see [20], Ch. 3), where the dilation scale
enters as a parameter. For each dilation scale, the prepro-
cessed neuron image is decomposed into components (call
them basic building blocks). The Minkowski functionals
can then be calculated by counting certain multiplicities
of the basic building blocks. This approach makes use of
mathematical results from Integral Geometry [21].

In this paper, we use extensions of the Minkowski
shape functionals, viz. the higher-rank Minkowski valu-
ations, in order to further improve neuromorphometric
characterization and analysis. These extensions were only
recently investigated by mathematicians [22–24] and in-
clude vector- and tensor-valued measures. They are there-
fore sensitive to directional information and also allow for
valuable graphical visualizations. Minkowski valuations
have already been successfully employed to describe the
morphology of galaxies [25] and galaxy clusters [26].

In the following, we will illustrate the potential of
Minkowski valuations for neuromorphometry by analyz-

Fig. 2. Two dilations of the λ-neuron. Top panel: dilation scale
rs = 2 pixels. Bottom panel: rs = 8 pixels. The pictures are
based on data obtained by [27] (their figure No. 5, copyright
permission by Nature Neuroscience).

ing a set of ten ganglion cells from the cat’s retina. We
consider two-dimensional projections of the cells. The set
used [27] includes cells with diverse shapes and of dif-
ferent types, according to a recently revised classifica-
tion of those types of cells [28]. In addition, ganglion
cells from the retina exhibit branching patterns which are
predominantly planar, and therefore compatible with the
two-dimensional Minkowski valuations considered in the
present work.

The article starts by presenting the higher-rank
Minkowski valuations (Sect. 2) and proceeds by describ-
ing their application to neuronal cells (Sect. 3). Results
are presented in Section 4. We draw our conclusions in
Section 5.

2 Minkowski valuations

Morphometry deals with measures for the content, shape
and connectivity of spatial patterns (“bodies”). Consider
a body P in 2-dimensional space such as constituted by
the pixels of a neuron image (see Figs. 1 and 2 for exam-
ples). A straightforward way to measure its “content” is to
calculate its area V0(P ) or — equivalently — to count its
pixels. The area has a number of useful properties. First,
it clearly meets the requirement of motion invariance as
stated in the introduction. Second, it is additive; that is,
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the area of the set union P of two bodies P1, P2 can be
decomposed into V0(P ) = V0(P1) + V0(P2)− V0(P1 ∪ P2).
As a consequence, the area can always be calculated by
summing up over local contributions from basic building
blocks (pixels, e.g.). Third, the area of a convex body can
be continuously approximated by the areas of a sequence
of convex polygons (conditional continuity of V0).

There are other geometric descriptors that share these
properties with the area V0, such as the perimeter. But the
class of motion-invariant, additive and conditionally con-
tinuous descriptors is not unbounded. Let us point this
out in full generality for d dimensions. Consider an arbi-
trary pattern P that can be decomposed into a set union
of finitely many convex bodies. According to Hadwiger’s
characterization theorem [29,30] there are only (d+1) lin-
early independent measures V0(P ), ..., Vd+1(P ) that obey
motion-invariance, additivity and conditional continuity.
They are called (scalar) Minkowski functionals. Thus, in
our case of d = 2, three functionals, viz. the area V0, the
perimeter 4V1 and the Euler characteristic V2 constitute
a complete family of scalar morphological measures in the
sense of Hadwiger’s theorem. The Euler characteristic is a
topological invariant and equals the number of connected
components minus the number of holes for patterns in R

2.
The Minkowski functionals were for the first time applied
to neuronal cells in [18,19].

Like the area V0, the perimeter 4V1 and the Euler char-
acteristic V2 can be decomposed into local contributions.
This time they arise from the boundary ∂P of the body P .
For smooth boundaries, one has

V1 =
1
4

∫
∂P

d1S, V2 =
1
2π

∫
∂P

c d1S, (2.1)

where c denotes the curvature of ∂P and varies as one
moves along ∂P . For pixel sets, which do not have a
smooth boundary, V1 and V2 can be calculated by sum-
ming up contributions from the bonds that confine the
pixels, and the corners, see [21].

A natural way to generalize the concept of the
Minkowski functionals is to upgrade to higher-rank
Minkowski valuations, which are motion covariant instead
of motion invariant. Motion covariance means that the
Minkowski valuations obey simple transformation rules,
when the body P is moved in space. Very roughly, they
transform like the position vector of P or its inertia ten-
sor with respect to some origin that is not moved with P ,
see [22] for details.

Motion-covariant, additive and conditionally continu-
ous descriptors are called Minkowski valuations (MVs, for
short). The class of MVs can be completely character-
ized by a generalization of Hadwiger’s theorem [22,31].
Since motion invariance is a special case of motion covari-
ance, the Minkowski functionals form part of the MVs.
The other MVs are higher-rank moments of the Minkowski
functionals.

In two dimensions there are three first-order moments
of the Minkowski functionals, the so-called Minkowski vec-
tors. For bodies with a smooth boundary, they can be

represented as follows:

V0 =
∫

P

xd2A, V1 =
1
4

∫
∂P

x d1S

V2 =
1
2π

∫
∂P

cxd1S, (2.2)

where x denotes the position vector of the area (perime-
ter) element d2A (d1S) to be integrated over. Minkowski
vectors can also be defined for pixelized images, which lack
a smooth boundary.

For the purposes of our analysis, it will be useful to
normalize the Minkowski vectors and to consider the cen-
troids:

pi = Vi/Vi (i = 0, 1, 2 if Vi �= 0). (2.3)

The centroids specify where some aspect of the geometry
(area, perimeter, curvature) is concentrated. Note, that
the centroids pi may, but need not coincide with each
other. It can be shown that all centroids coincide for spher-
ically symmetric bodies.

Moving to second-order moments yields the second-
rank Minkowski tensors. They are built upon the symmet-
ric tensor product denoted by x ⊗ x =: xx =: x2. In two
dimensions there are more than three tensors, because, for
∂P -integrals, instead of calculating moments with respect
to the spatial position x, one can also consider the local
normal n of the boundary, which points outwards and is
normalized to one1. Thus, for the integrals

∫
∂P d1S and∫

∂P
cd1S, three types of second-order weights for building

moments are available, namely xrns, where (r, s) = (2, 0),
(1, 1) and (0, 2) (since we only consider symmetric mo-
ments, nx and xn are identical). Altogether the following
seven tensors can be formed:

V 2,0
0 =

∫
P

xxd2A, (2.4)

V r,s
1 =

1
4

∫
∂P

xrns d1S, (2.5)

V r,s
2 =

1
2π

∫
∂P

cxrns d1S. (2.6)

In practice, however, we need not consider all of these ten-
sors, because some of them are linearly dependent [23]. It
can be shown that only the following tensors carry inde-
pendent information:

V 2,0
0 =

∫
K

xxd2A, (2.7)

V 2,0
1 =

1
4

∫
∂K

xxd1S, V 0,2
1 =

1
4

∫
∂K

nn d1S, (2.8)

V 2,0
2 =

1
4

∫
∂K

cxxd1S. (2.9)

In the following we will only consider these second-rank
tensors. They are listed together with their names in Ta-
ble 1. The numerics for calculating the Minkowski val-
uations for pixelized data sets is described in [33], the

1 First-order moments with the normal vectors always van-
ish, as is shown in [32]
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Table 1. The Minkowski valuations used in this paper.

Symbol Formula Name

V0

∫
P

d2A area
p0

∫
P

xd2A/V0 center of mass

V 2,0
0

∫
P

xxd2A mass tensor
V1

∫
∂P

d1S length of perimeter
p1

∫
∂P

xd1S/V1 center of perimeter

V 2,0
1

∫
∂P

xxd1S perimeter tensor

V 0,2
1

∫
∂P

nnd1S n-weighted perimeter tensor
V2

∫
∂P

cd1S Euler characteristic
p2

∫
∂P

cxd1S/V2 curvature centroid

V 2,0
2

∫
∂P

cxxd1S curvature tensor

theoretical foundations for the numerics are given in [34],
Ch. I.3 and Appendix A.2.

Because of motion covariance, the numerical values of
the second-rank Minkowski tensors depend on the choice
of the coordinate system. But in many applications, there
is a natural choice for the origin of the coordinate system.
For our neuronal cells we will take the center of the soma
as the origin (in other cases it might be useful to calculate
the second-rank Minkowski tensors V r,s

i with respect to
the corresponding centroids pi for i = 0, 1, 2).

In order to illustrate how the Minkowski valuations
work for pixelized data sets, let us consider three simple
toy examples (some more examples can be found in [33]).
They are shown in Figure 1. The red filled square, the blue
open square and the yellow cross denote the centroids p0,
p1 and p2, respectively. The tensors are calculated around
the center of the black square in the middle of the pixel
sets as origin. The red, blue and yellow ellipses within
the neurons visualize the tensors V 2,0

0 , V 2,0
1 and V 2,0

2 , re-
spectively. The ellipse for the tensor V 0,2

1 is shown at the
left-hand side. The equation defining the ellipses is always:
x = c+a( τ>

τ<
cos(φ)e>+sin(φ)e<), where φ runs from 0 to

2π, e> (e<) is the eigenvector corresponding to the larger
(smaller) eigenvalue τ> (τ<) of the tensor and c is the
center of the soma (except for V 0,2

1 ; its ellipse is shifted to
the edge of the panels). So the axis ratios of the ellipses
are the ratios of the eigenvalues, and the ellipses point into
the direction of the eigenvector with the larger eigenvalue.
The size of the ellipses does not carry specific information,
since the scale factor a > 0 is freely chosen for each tensor
(roughly, we use the a’s for equalizing the minor axes of
the ellipses).

In the top panel of Figure 1 the pixel set displays an ax-
ial symmetry and is almost point symmetric. Accordingly,
the centroids are very close to each other; they fan out
along the symmetry axis. The tensors V 2,0

i align perpen-
dicular to the symmetry axis, because the whole pixel set
is more elongated along the horizontal axis. The tensor
ellipses for the mass tensor V 2,0

0 and the perimeter ten-
sor V 2,0

1 almost coincide, whereas the ellipse correspond-
ing to V 2,0

2 is a bit more elongated. The reason is that
the corners, which play an important role for the curva-

ture tensor V 2,0
2 are further away from the middle black

square, which only contributes to V 2,0
0 and V 2,0

1 .
For the middle panel, the pixel set has been slightly

modified: in order to destroy the symmetry, we rearranged
one of the “arms”. As a consequence, the average pixel is
lower down than in the first panel, and all centroids move
downwards. The effect is most prominent for the curva-
ture centroid p2, because it depends on corners, some of
which disappear for the rearranged “arm”. Note, further-
more, that the centroids span a non-degenerate triangle,
a fact that indicates asymmetry. The lack of symmetry is
also reflected by the tensor ellipses, which are not paral-
lel any more. Note, furthermore, that the ratios between
the bigger and the smaller eigenvalues are larger for the
second pixel set. The reason is that — due to the “move-
ment” of the upper right arm — the vertical extension of
the pixel set shrinks on average, such that the pixel set is
more elongated.

The bottom panel shows a variation of the pixel set
in the middle panel, where two holes have been added.
Accordingly, the Euler characteristic becomes −1. There
is no big effect on both p0 and p1 and the related tensors.
p2, however, undergoes a big jump, and the ellipse for
the curvature tensor V 2,0

2 is twisted and more elongated.
The position of p2 can be explained as follows: the hole
at the right-hand side makes a big negative contribution
to V2. So, if V2 is calculated around the center of the black
square, it points to the left hand side. But since the Euler
characteristic V2 itself is negative, p2 is bounced back to
the right hand side due to its normalization through V2.
For the major axis of the curvature tensor ellipse, there is
some kind of repulsion from the right hole, because this
hole makes a big negative contribution to the tensor; the
effect of the other hole is much smaller because it is closer
to the soma.

The tensor V 0,2
1 is shown at the left hand side. It al-

ways aligns parallel to the grid axes. The reason is that it
crucially depends on normals that can only point into four
directions for a square lattice2. The shape of the V 0,2

1 el-
lipse can be understood as follows: the eigenvalues of V 0,2

1
count the number of bonds with horizontal or vertical nor-
mals, respectively. For our toy examples, there are more
vertical normals, so the tensor is anisotropic. By moving
from the top to the middle panel, more horizontal than
vertical normals are destroyed; in this way the tensor be-
comes even more anisotropic.

Let us conclude this section by adding two comments.
First, note, that by considering the eigenvalues of a tensor
with respect to an origin which is given by the body itself,
motion-invariance is regained. But does this mean that we
have been returning to the scalar Minkowski functionals
themselves? The answer is no. Additivity has been lost,
because forming eigenvalues is not a linear operation, and,
as a consequence, the eigenvalues of a Minkowski tensor
cannot be decomposed in the same way as the area is. So

2 For an elementary proof of this, you can start with a single
pixel and then proceed by using additivity.
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we have significantly extended the Minkowski framework
without having given up its conceptual foundations.

Second, there is a natural extension of our framework
to three-dimensional neuron data. In three dimensions,
there are four scalar Minkowski functionals, viz. the vol-
ume, the area, the integrated mean curvature and the
Euler characteristic (see [35] for definitions). Higher-rank
Minkowski tensors are moments of these quantities. There
are four centroids and a number of related tensors. They
can be calculated for smooth bodies as well as for voxel
sets (see [33]).

3 The analysis of pixelized neuron data

Data. We analyze two-dimensional data of 10 proto-
typical neuronal cells, made available by the courtesy
of Prof. Berson [27]. This subset of cell images were
obtained from 43 cats of various ages following the
appropriate animal care guidelines. Staining was re-
vealed using Lucifer Yellow immunohistochemistry [36],
and observed by means of epifluorescence illumination.
Camera lucida drawings were obtained for selected cells.
Ganglion cells were morphologically classified taking into
account soma size, dendritic field size and structure,
retinal location and dendritic stratification, see [37]. Cells
were recognized as being members of various established
types, (α, β, δ, ε, η, ι, κ, λ, θ, ζ). See [36] and references
therein for a detailed description of the experimental
procedure and cell classification. We have one cell per
cell type. Each cell is represented as a subset of filled
pixels within a square lattice. The physical scale of one
pixel is about 1.8 µm. Not all of the neuron pixel sets
are connected; some of them consist of disconnected parts.

Method. We start from a pixel set P representing a cell.
We first apply a binary dilation as known from mathemat-
ical morphology, see [20], Ch. 3. The structuring element is
chosen to be a sphere of radius rs. As a result we get a new
pixel set Prs comprising all pixels for which the distance
from some pixel of P is no more than rs, see [38]. In more
intuitive terms, this set can be interpreted as the “influ-
ence area”, i.e. that part of space for which interactions
with the neuron are possible, given that the interactions
are confined to distances no larger than rs (ib.). Two dila-
tions of our λ neuron with rs = 2 pixels and rs = 8 pixels,
respectively, are presented in Figure 2. They show that
dilations bring out structure at different scales. Consider,
for instance, the area V1. Whereas, for small rs, the area
is dominated by details of the dendrites, for larger rs, V1

reflects the overall structure of the cell.
We call rs dilation scale. It will always be measured

in units of pixels. In order to be sensitive to structures
at different scales, we will not stick to a particular rs, but
rather consider a series of dilations with increasing dilation
scale rs. We will calculate our characteristics for each di-
lation scale and show them as a function of dilation scale.
For instance, we will calculate V0(Prs) for various rs and
regard this as a function V0(rs). Such a function can then

Fig. 3. The neurons of type α (top panel), β (middle panel)
and δ (bottom panel). The pixel sets are dilated, the dilation
scale is one pixel. The meaning of the points and the ellipses
is explained in Figure 1. The small dash in the upper right
corner of each panel has a length of 20 pixels (i.e. 36 µm). The
pictures are based on data obtained by [27] (their figure No. 5,
copyright permission by Nature Neuroscience). Note, that in
all panels of this figure as well as of Figures 4 and 5 the tensor
ellipses for V 2,0

0 and V 2,0
1 almost coincide.

be compared for different cells. We thus get a multiscale
analysis.

For calculating the Minkowski tensors at some partic-
ular rs, we choose the center of the soma as a “natural”
origin. The soma and its center are identified visually, in
an interactive way.

4 Results and discussion

Qualitative results. We show the neurons with some of
the results for a dilation scale of one pixel in Figures 3–53.

Let us start with some qualitative observations. First,
the centroids p0 through p2 are typically not within the
soma. Recalling that the centroids are morphological cen-
ters, we can equivalently say that the soma is quite often
eccentric. It would be interesting to know whether the ec-
centricity of the soma is characteristic for some types of
neurons. We suspect that the eccentricities depend on the
function and the local environment of the cells. Further
investigations are needed to explore this effect.

3 In the following, one has to be cautious in interpreting the
yellow ellipses, because, for our neuronal cells, the tensor V 2,0

2

sometimes has one or two negative eigenvalues. In this case,
the ellipse will become smaller than the other ellipses and point
into the direction of e< instead of e>, if |τ>| < |τ<|.
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Fig. 4. Neurons of type ε (top panel), η (bottom left panel)
and ι (bottom right panel). The dilation length is one pixel.
The pictures are based on data obtained by [27] (their figure
No. 5, copyright permission by Nature Neuroscience).

Fig. 5. Neurons of type κ (top panel), ζ (middle left panel), θ
(middle right panel) and λ (bottom panel). The dilation scale
is one pixel. The pictures are based on data obtained by [27]
(their figure No. 5, copyright permission by Nature Neuro-
science).

Fig. 6. Top panel: the point styles denoting the different cell
types. Bottom panel: the volume V0 as a function of rs for a
large range of rs-values.

Second, we observe that typically p0 and p1 almost
coincide, whereas p2 may be further away from them.
Something similar is true about the tensors: the tensor el-
lipses of V 2,0

0 and V 2,0
1 often closely resemble each other,

whereas the ellipse for V 2,0
2 greatly differs. The reason is

as follows: As our toy examples have shown, p2, V 2,0
2 and

the corresponding Minkowski functional (viz. the Euler
characteristic) are sensitive to holes. For positive Euler
characteristics, every hole that is off-soma pushes p2 onto
the other side of the soma. As a consequence, the location
of p2 and the form of V 2,0

2 very much depend on the holes,
their shapes and their positions. The holes in turn depend
on tiny details of the branching structure that are neither
reflected in p0 and p1 nor in the tensors V 2,0

0 and V 2,0
1 .

— Note, that most of the holes are probably due to the
projection of the neuron into two dimensions.

We will now turn to a more quantitative analysis. We
show the first scalar Minkowski functional, V0, for a broad
range of dilation scales rs in the bottom panel of Figure 6,
where the point styles designating the different cell pro-
totypes are explained in the top panel. For rs < 5, V0

typically grows very quickly, as rs increases. For larger di-
lation scales, rs > 10, typically a more moderate growth
can be seen. For some neurons, V0(rs) appears to be linear
in this range of dilations scales; for other neurons, V0(rs) is
a convex function in this range of rs. Bigger neurons typ-
ically grow faster than smaller ones for these rs-values.
The explanation is as follows: as rs increases, the arms of
the cells’ arborizations are blown up, and the volume V0
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is growing accordingly. However, when different arms be-
gin to overlap each other, no additional pixels are filled,
if rs is further enhanced. Therefore, as soon as overlaps
become significant, the growth of V0 slows down. At some
value of rs, the whole pattern of arms will be covered by
pixels, and only the outer parts of the cell will contribute
to the growth of V0.

For a better understanding, let us look closer at the β
cell. Its overall shape is roughly spherical, and its exten-
sion 2r0 is about 60 pixels. If the β cell is dilated with a
sufficiently large rs (rs > 10), the dendritic fine structure
is completely covered, and the dilated cell is not that far
from a circle of radius r0 dilated by rs. Thus, for suffi-
ciently large rs-values, the volume of the dilated cell is
about

V0 ≈ π(r0 + rs)2 = πr2
0 + 2πr0rs + πr2

s , (4.10)

which is parabolic in rs. If this approximation is reason-
able for a broad range of rs-values for which rs < r0,
the quadratic term πr2

s can be neglected, and the func-
tion V0(rs) appears to be linear in this range.

More generally, let CP denote the convex hull of a
pixelized data set P (or, more precisely, a pixel approx-
imation of its convex hull). For sufficiently large dilation
scales rs, dilations of P and CP , call them Prs and CPrs ,
respectively, are close to each other; consequently, the dif-
ference V0(Prs)− V1(CPrs) is small compared to V0(Prs).
The size of CPrs can be calculated using Steiner’s formula
(see [30], p. 367, e.g.):

V0(CPrs) = V0(CP ) + rs4V1(CP ) + πr2
s . (4.11)

This is again a parabola, where the Minkowski function-
als V0 and V1 of CP enter as coefficients. As a consequence,
if rs is large enough, the volume V0(Prs) can be approxi-
mated by the r.h.s. of equation (4.11). It is thus approxi-
mately a quadratic function of rs and might appear to be
linear for a certain range of rs-values. The shape of the
parabola is determined by the scalar Minkowski function-
als of the convex hull CP . Bigger neurons will have larger
values of V0(CP ) and V1(CP ) such that their V0(rs) is
larger and has a larger slope4.

In order to observe the fine-grained structure of the
cells where the neurons significantly differ from their
convex hull, we have to concentrate on smaller dilation
scales rs < 20.

The top panel in Figure 7 shows more closely that, for
many neurons, there is a transition or crossover between
a quick and a moderate growth in V0 around rs ≈ 5. For
some bigger neurons (α, δ, κ, e.g.), this crossover can be
observed as a bend around rs = 5.

The medium panel in Figure 7 shows that, for small rs,
V1 decreases as a function of rs. The reason is that, in this

4 Similar considerations apply to V1. Note also, that equa-
tions (4.10) and (4.11) are strictly speaking only valid for con-
vex bodies (which CP — some pixel approximation of a convex
hull — isn’t necessarily). For pixel sets as investigated in this
paper, additional factors arise in the rs expansions, and the
equations hold only up to some corrections. But this does not
invalidate our argument.

Fig. 7. The scalar Minkowski functionals as functions of the
dilation scale for all cells. (Note, that in the first panel the
curve for the θ cell is between the curves for the η and ζ cells.)

range of rs, V1 is dominated by small scale features that
are “swallowed” stepwise. V1 reaches a constant value later
on. The reason is as follows. As rs increases, V1 will gain
at the outer parts of the cells, but lose in the inner parts,
because holes are being filled. Gains and losses roughly
compensate each other. Note, that the curves for the α,
δ and κ cell type show an inflection point, which roughly
coincides with the location of their bends in V0.

The curves for the Euler characteristic (bottom panel
in Fig. 7) display a number of jumps. One reason is that
the Euler characteristic takes only whole numbers as val-
ues. Another reason is that the Euler characteristic is sen-
sitive to holes, which in turn depend on tiny details that
change continually, as the cells are dilated. But there is
also some more general pattern. The negative values to be
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Fig. 8. The logarithm of Q (a variety of the isoperimetric
ratio) as a function of rs.

found most often indicate that the cells are dominated by
holes. For the bigger cell types (α, δ, ε and κ), there is
a characteristic dip for small rs. Up to this point, addi-
tional holes are formed, as branches of the neuron start to
touch each other. The minimum of the dip roughly seems
to coincide with the point where V0 shows the crossover
between the two different kinds of growth.

A useful way of combining the information present in
the scalar Minkowski functionals is to construct the fol-
lowing dimensionless quantity Q:

Q :=
4V 2

1

πV0
. (4.12)

This is a variation of the so-called isoperimetric ratio. For
a convex body P , we have Q(P ) ≥ 1, where the equal-
ity holds for a circle [39–41]5. Q is considerably larger
than one, whenever the body under investigation has an
“excess perimeter” as compared to its area. We show the
logarithm of Q as a function of rs in Figure 8. The inter-
pretation is as follows: for small dilation scales rs, most of
the dendrites are still present producing excess areas, so
Q starts with very high values. As the dilation scale in-
creases, Q goes down. The α, ε and κ cells have the largest
Q-values, whereas the β-cell has the lowest Q-values for a
large range of dilation scales, because of its overall spher-
ical shape. For rs < 6, the decrease in log10(Q) seems
roughly to be linear; the slopes vary with the cell type.

In Figures 9 and 10 we consider the centroid distances
pi-soma, disi. For i = 0, they are relatively stable as a
function of rs, whereas, for i = 1, more variation can be
observed. How is this to be explained? Consider the κ
neuron (Fig. 5) and the crosses in Figure 9 as an example.
The soma of the κ cell is located in the lower half of the
neuron (in Fig. 5 it is covered by parts of the ellipse for
V 2,0

2 ). Moreover, in the lower half of the κ cell the dis-
tribution of small arms is a bit denser than in the upper
half. Consequently, for small rs, there is a significant con-
tribution to the perimeter from this part, and accordingly
the center of perimeter p1 stays in the lower half. For

5 For a pixel approximation of a circle, Q is larger than 1,
but this does not matter for our purposes.

Fig. 9. The distances soma — p0 (top panel) and soma — p1

(bottom panel) as functions of the dilation scale.

larger rs ≈ 10, however, the lower, denser part is filled
more quickly, whereas in the upper part quite big holes
are left, which significantly contribute to the perimeter.
As a consequence, the position of p1 moves upwards and
away from the soma, such that dis1 becomes larger. Later,
when these big holes are filled as well, p1 approaches the
soma again, such that dis1 becomes smaller. In this way
the curve for dis1 contains very detailed information about
the morphology of the neuron.

In terms of dis0 and dis1 the soma is most eccentric for
the ε neuron. This is also reflected in our visual impres-
sions. It might be useful, however, to normalize the disi

parameters by some estimate of the cell size. If we would
do so, smaller cells would have a reasonable chance of hav-
ing bigger eccentricities.

For i = 2, (Fig. 10) we observe even larger variations of
the centroid distances. Plateaus alternate with jumps that
can ultimately be traced back to jumps in the Euler char-
acteristic. For small neurons, such as the β type, however,
there is not much variation, because the cell is very small
and gets completely filled soon. For the α, δ and ε-type,
there is a common pattern: As the dilation scale increases,
the jumps become larger. The reason is probably that, for
larger dilation scales, only a few holes will appear far off
the center. When one of these outer holes disappears, p2

jumps considerably.
In Figures 11 through 13 we consider the anisotropy

of the cells. In order to quantify anisotropy we take the
eigenvalues of the tensors V j,k

i , τ> and τ< and calculate
the quantity anis := 2(τ> − τ<)/(|τ>| + |τ<|) ≤ 2. The
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Fig. 10. The distances soma — p2 as a function of the dilation
scale for four cells. If p2 is not defined for some rs (because of
V2 = 0), no point is shown.

Fig. 11. The anisotropy parameters derived from the mass
tensor V 2,0

0 (top panel) and the perimeter tensor V 2,0
1 (bottom

panel) as functions of the dilation scale.

anisotropy parameters derived from different tensors fo-
cus on different kinds of anisotropy (the area elements
belonging to a body might be distributed differently from
those of its perimeter elements, for instance). As can be
seen from Figure 11, the anisotropies in V 2,0

0 and V 2,0
1 are

quite stable; most often they decrease slowly, as the dila-
tion scale increases. This indicates that the cells display
large-scale anisotropies that are not destroyed by dilat-
ing the cell. For some cells (η, κ, ζ), the anisotropies are
considerable. For each cell type, the anisotropies of area
and perimeter do not differ greatly. The V 2,0

1 tensor is
a bit more sensitive to small-scale variations of the mor-
phology, however; so the anis(V 2,0

1 )-rs curves appear less
smooth than the anis(V 2,0

0 )-rs curves. On the other hand,
across the range of cell types, the variation is quite high.
Thus anisotropies seem to have a significant discriminative
power.

It is different with the tensor V 2,0
2 , which is consid-

ered in Figure 12. The anisotropy derived from this ten-
sor jumps back and forth and sometimes reaches values
that exceed those derived from the other tensors. This
performance should not come as a surprise, since we have
already seen that other characteristics that are related to
the Euler characteristic such as p2 typically show jumps.
At some point, however, when the dilation has produced
one connected pattern and no new holes will be formed
any more by increasing rs further, the anisotropy becomes
smoother. This point is reached very early for the β cell
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Fig. 12. Another anisotropy parameter (derived from V 2,0
2 )

for two cells as a function of the dilation scale.

and therefore visible in the bottom panel of 12. Apart
from this, the dependence on rs looks rather erratic and
irregular.

As mentioned before, on the square lattice, the last
tensor to be considered, V 0,2

1 , has a simple interpretation.
It checks whether the majority of normals are parallel to
the horizontal or to the vertical grid axis. If ∂P is domi-
nated by vertical or horizontal normals, V 0,2

1 will display
a corresponding anisotropy; if not, V 0,2

1 will roughly be
isotropic. Figure 13 shows results for selected neurons.
If we compare to the anisotropies considered above, the
anisotropy arising from V 0,2

1 is quite small. For small val-
ues of the dilation scale, anis(V 0,2

1 ) is not so much influ-
enced by the overall shape of the neuron, but rather by
the directions of the single arms. Interestingly, the graphs
shown are qualitatively different for the different types of
cells: One cell (viz. the α cell) starts with zero anisotropy,
whereas others begin with a non-zero anisotropy. More-
over, sometimes significant peak structures can be ob-
served. But because of its relation to normals, n, the value
of V 0,2

1 depends to a large extent on the orientation of the
cell with respect to the grid. For this reason V 0,2

1 is only
of limited use.

In Figure 14, the traces of the tensors V 2,0
i are con-

sidered (the trace of the fourth tensor, V 0,2
1 need not to

be taken into account at this point, because it equals V1).
Qualitatively, the viewgraphs for V 2,0

i resemble the curves
of their scalar counterparts, Vi for i = 0, .., 2. In order to

Fig. 13. The anisotropy parameter derived from V 0,2
1 for four

cells as a function of the dilation scale.
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Fig. 14. The traces of the tensors V 2,0
i for i = 0, .., 2 as func-

tions of the dilation scale.

extract more specific information, it is thus useful to di-
vide Tr(V 2,0

i ) by Vi, respectively, for i = 0, .., 2. The result
is a measure of how concentrated a cell is in terms of area,
perimeter or curvature: Tr(V 2,0

0 )/V0, for instance, will be
the bigger, the further the soma and those parts of the
cell that bear most of its volume lie apart.

Results can be seen from Figure 15. Tr((V 2,0
0 )/V0 in-

creases continuously, as rs is enhanced. The reason is that
more pixels are added at the outer parts of the neuron, so
the neurons become less concentrated.

In Tr((V 2,0
1 )/V1 there is a kink at least for some

neurons (α, δ, ε, κ). It indicates an additional growth
effect. It is probably due to the fact that, for small rs,
the little branches within the cell significantly contribute
to V 2,0

1 , thus the neuron appears to be very concen-
trated; for larger values of rs, the arms merge and do

Fig. 15. The traces of V 2,0
0 , V 2,0

1 , and V 2,0
2 , now normalized by

the corresponding scalars V0, V1 and V2, respectively. If V2 = 0
for some rs, no data point is shown at all.

not contribute to the perimeter any more, so most of
the neuron’s perimeter is found at its outer parts and
Tr((V 2,0

1 )/V1 is comparatively large. In between, the
growth of Tr((V 2,0

1 )/V1 is disproportionally high. Note,
that for the α, δ and κ cells, the kinks roughly set in at
the rs-locations of the bend in V0, which roughly coincide
with the positions of the inflection points in V1.

Constructing global measures. The multiscale
analysis presented in this paper leads to rich and detailed
information on the geometric aspects of an object. Never-
theless, once such a description of the data has been ob-
tained, it is often useful to derive a compact set of global
measures that summarize the most important morpho-
logical aspects. In this paper, we consider several ways of



542 The European Physical Journal B

condensing multiscale information into simple parameters:
The monotonicity index [18,19] is defined as

is =
s

s + d + p
, (4.13)

where s, d and p count each time the function increases,
decreases and remains unchanged, respectively. Thus is
quantifies the fraction of the interval where the function
is monotonically increasing. The mean value is the average
value of the function over the interval. The half scale is
the scale at which the area below a curve reaches half
of its total value. A different way of constructing global
parameters is to consider the slope of some characteristic
in some particular range of rs-values6.

In Figure 16 we visualize the average slopes of V0

in the range rs ∈ [10, 60] and of log10(Q) in the range
rs ∈ [1.5, 4.5] for the different cells. In both cases we
choose a range of rs-values for which the functionals under
investigation look roughly linear for most cell types. From
Figure 16 it is clear that the slopes do indeed discriminate
amongst the cell prototypes.

In order to further illustrate our approach, we se-
lected two feature spaces, which are spanned by global,
size-independent morphological characteristics. In order to
calculate these global measures, we considered the inter-
val rs ∈ [0, 20] and a spacing of 0.2.

Our first feature space is spanned by the mean of
the anisotropy parameter derived from V 2,0

0 , anis(V 2,0
0 ),

and the mean of the anisotropy parameter correspond-
ing to V 2,0

0 , anis(V 2,0
1 ). It is shown in Figure 17a. There

appears to be some systematic correlation between both
characteristics: cells with higher anis(V 2,0

0 ) tend to have
higher anis(V 2,0

1 ) as well. Given our qualitative observa-
tions above, this should not come as a surprise, although
it is in principle possible to have high anisotropy in V 2,0

0

and low anisotropy in V 2,0
1 . Thus, for discriminating be-

tween different cells, one dimension of this feature space
is essentially redundant. But the presence of some corre-
lation may indicate some common trait shared by all cell
prototypes.

A different situation can be observed for our next
feature space. It is spanned by the monotonicity index
is(dis0) and by the half scale h(Tr(V 2,0

1 )). As can be seen
from Figure 17b, the scatterplot displays more scatter,
and clusters can be recognized in the feature space.

Although the methodology proposed in this paper may
have a bearing on the classification of cat ganglion cells,
it is difficult to draw more definitive conclusions at this
point, because the original classification [28] takes into ac-
count not only the neuronal morphology, but also the cell
stratification and the size of the soma. Moreover, except
for the more common α and β types, only a small number

6 Note, that these definitions require further elaboration.
First, p2 is not always defined, since the Euler characteris-
tic v2 might become 0. Second, the definition of the half scale
needs elaboration for cases, in which the curve under consid-
eration crosses the zero line. The results that follow, however,
do not depend on conventions for these cases.

Fig. 16. The slopes of V0 (bottom panel) and log10(Q) (top
panel) for the different cells. The point styles are the same as
in the top panel of Figure 6.

(a)

(b)

Fig. 17. Scatter plots from selected features of an extended
Minkowski analysis showing the population of the feature space
with the neuronal cells.

of examples of the cell types have been analyzed in the
literature [28]. A more detailed examination of which
feature spaces are most useful has to wait for further data.

Relation to other morphological measures. In or-
der to put Minkowski valuations into the perspective of
previous works, we note that [2] group morphological
measures into four classes, namely “overall cell morphol-
ogy”, “territorial coverage”, “cell density, overlap and con-
nectivity” and “hierarchical structure of arborizations”.
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In these terms, our measures are mainly responsive to
“overall cell morphology” and “territorial coverage”. Our
measures do not provide a reconstruction of hierarchical
tree structures, as captured by measures of the fourth class
in [2]. Note, in particular, that, different from a number
of morphological descriptors such as Rall’s ratio, our ap-
proach is not based upon a prior division of a neuron into
a number of elements like cylinders. No specific model
assumptions are made. Our method is completely non-
parametric.

Uylings and van Pelt [6] classified morphological mea-
sures as topological/metrical and “whole tree”/“within
tree”. In these terms our approach is metrical in that the
full spatial information is used (only the Euler character-
istic is a topological invariant). Our approach is “whole
tree” and even “whole cell”, since it takes information
from all pixels of the cell image.

It is important to note that there are conceptual links
between Minkowski valuations and some previously known
measures. For instance, Minkowski valuations are related
to differential geometry measures such as the curvature
(see [14]). Differently from [14], however, we do not con-
sider the curvature as a function of curve length, but
rather integrate it over the whole boundary of the neu-
ron image. Taking spatial moments of the curvature as we
do for calculating p2 and V j,k

2 reveals where the curvature
is concentrated in a cell and how it is distributed.

A few other measures known from the specialized lit-
erature are embedded in our framework. The area and
the perimeter often used in neurobiology are just two
of the Minkowski functionals. We systematically extend
these two quantities by considering the other Minkowski
functionals and spatial moments, i.e. the Minkowski vec-
tors and tensors. The center of mass (often called “the
centroid”) is also part of our framework presented here.
But there are a few other centroids as known in Integral
Geometry. Our toy examples have shown how important
the relative locations of all centroids are. It is particu-
larly interesting that they express important information
on the symmetry of a cell. In our framework it is straight-
forward to calculate the distance between the centroids
and the soma centroid in order to quantify to what ex-
tent the soma is off-centered, which is a basic measure of
symmetry.

For quantifying the asymmetry of neuronal cells, two-
dimensional moments of inertia have been considered in
the literature (see [6] and [38]). The moments of inertia are
the eigenvalues of the inertial tensor and measure the prin-
cipal dispersions of the area (see [42]). Our tensor V 2,0

0 has
the same eigenvalues and eigenvectors as the inertia ten-
sor. Our approach is to some extent more general than [6]
since we also consider dilations of the cells with rs �= 0
and the other tensors such as V 1,0

1 . These other tensors
display the asymmetry of a cell with respect to other fea-
tures (for instance, boundary length instead of area). We
have also proposed to use Minkowski tensors for extracting
different information such as the concentration of a cell by
looking at the trace and comparing to scalar Minkowski
functionals.

(a) (b)

Fig. 18. An illustration of the distortion we apply. (a): the
original cell (α type); (b): a distortion of the cell in (a).

Table 2. The cell types and the numbers denoting the cells
that were obtained from the cell types. For instance, the orig-
inal α cell is labeled by 1; its four distortions are labeled by
2–5; and so forth.

Cell type Nos.
α 1–5
β 6–10
δ 11–15
ε 16–20
η 21–25

Cell type Nos.
ι 26–30
κ 31–35
λ 36–40
θ 41–45
ζ 46–50

A comparison to a Sholl analysis. In order to probe
our method further, we compare it to a well-known ap-
proach, viz. a Sholl analysis. For each of our cells [27], we
obtain a few distorted versions. The distorted cell images
are produced by using a transformation tool implemented
for “Gimp” [43]. Very roughly, the soma is shifted, and
its former environment is warped so as to follow it. An
example is shown in Figure 18. Although the distortions
of the cells were obtained by hand, we did not tune them
to any purpose.

We produce four distortions of each cell. In this way the
shape space is populated with additional cells. Altogether
we end up with 50 cells (10 original ones and 40 artifical
ones). We number them consecutively: Cells 1–5 are the α
cell and its distortions, and so on (see Tab. 2).

Our distortions reflect one special type of “morpho-
logical distortion”. It is therefore to be expected that, un-
der some morphological characteristics, the distorted cells
will be close to the originals ones, whereas, under different
characteristics, they will not.

We can now compare our measurements to a Sholl
analysis. We run a Sholl analysis over the 50 cells (see [6],
p. 404 and references given therein). The number of
branching points and the number of terminal points are
recorded as functions of the distance from the soma. In
order to obtain global measures for each individual cell,
we calculate the mean and the standard deviation of both
functions. The range of distances over which the branch-
ing/terminal points are recorded and averaged is the same
for each cell. The Minkowski functionals and the higher-
rank Minkowski valuations are also calculated and the
global measures for each cell are obtained.

We then apply Ward’s hierarchical clustering method
with Euclidean distances [44]. Results are presented in
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(a)

(b)

Fig. 19. Classification patterns according to an agglomerative
hierarchical clustering analysis based upon (a) a Sholl analysis;
(b) a variation of the isoperimetric ratio, Q.

Figures 19 and 20. The horizontal lines indicate the parti-
tion of the cells into 10 classes of neurons which we assume
to exist. Each class is defined as the group of cells whose
branching starts at the intersection with the horizontal
line.

The top panel of Figure 19 shows a clustering diagram
that was obtained on the base of the global parameters
from the Sholl analysis. It shows that our “morphologi-
cal distortion” changes the cell structure significantly, but
that three of the original cells together with their distor-
tions are regained as clusters.

The explanation is that our “morphological distortion”
mostly leaves the numbers of arms and branching points
invariant. However, since the soma is shifted, the distances
of some branching points from the soma change. In this
way there is some significant variation in cell structure
which is reflected in the clustering diagram.

It is easy to regain a considerable fraction of the orig-
inal cells together with their distortions as clusters in a
dendrogram with Minkowski valuations as input. The rea-
son is that the cells significantly differ in terms of size,
which is not affected by our distortions, and some of the
Minkowski functionals like V0 or V1 reflect the cell size.
But we take it to be a trivial thing to distinguish the dif-
ferent cell types in terms of their size. So from now on, we

(a)

(b)

Fig. 20. Classification patterns according to an agglomerative
hierarchical clustering analysis based upon (a) the anisotropy
parameter anis(V 2,0

1 ) (b) a compacticity parameter defined in
terms of V 2,0

1 and V0.

will only look on dimensionless measures based upon the
Minkowski valuations. They do not directly reflect size7.

In the bottom panel of Figure 19 we show a clustering
dendrogram that is based on the mean logarithm of Q.
Very roughly, Q measures the excess perimeter given the
area of a cell (see Eq. (4.12) for the definition). It only
builds upon the scalar Minkowski functionals. It can be
seen that six original cells and their distortions form clus-
ters “in the right way”. So in this regard, Q does better in
grouping together the originals and their distortions than
the Sholl analysis does. In order to understand why Q
is such stable under our morphological distortions, look
at the ε cell as an example. The ε cell displays a maxi-
mum value of Q because of its long, but isolated arms.
The lengths and the separations of the arms are not much
changed, if the soma is shifted.

The top panel of Figure 20 shows a clustering den-
drogram that was obtained on the basis of the mean
anisotropy from V 2,0

1 , anis(V 2,0
1 ). The originals and their

distortions are not at all grouped together in “the right
way”. But after a little reflection, this should not come as
a surprise. The anisotropy parameters were obtained by
calculating the tensor with the soma as center. If the soma

7 We will not discuss to what extent the Sholl measure is
affected by cell size.
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is shifted, the whole cell is seen from a different perspec-
tive, and the anisotropy changes significantly.

The fact that the anisotropy parameter anis(V 2,0
1 ) does

a worse job in regaining the original cells and their distor-
tions, does not mean that higher-rank Minkowski valua-
tions are useless. First, it is possible to form other dimen-
sionless parameters on the basis of the valuations that do
much better. For instance, we calculate V 2,0

1 with respect
to p1 as origin, normalize its trace by

√
V0

3, and take
the mean. This yields another measure of how concen-
trated a cell is (similar measures were shown in Fig. 15;
the new measure is somehow a “relative” of the isoperi-
metric ratio). If we apply the clustering algorithm for this
measure, we get six cell types right. This is shown in the
bottom panel of Figure 20. Second, quite to the contrary,
there is a different way at looking at our dendrograms.
The idea is that our measures provide different order-
ings of the cells according to different criteria. The fact
that the anisotropy parameter generates a different den-
drogram than the Q parameter shows that both measures
highlight different aspects of morphology. They suggest a
different taxonomy of the cells. This is also manifest from
those parts of the dendrograms that lie above the horizon-
tal line: they are different. We conclude that, altogether,
there is a strong case for exploring the Minkowski func-
tionals and higher-rank Minkowski valuations further.

5 Conclusions

The shape of a neuronal cell is an important indicator of
its function. For instance, it has been suggested that the
complexity and symmetry of the neuronal tree are asso-
ciated with mental illnesses, see, e.g. [45]. For this rea-
son, the characterization of neuronal anatomy is a thriv-
ing field of research, see, for instance, [6,14] and references
therein. The stages of the growth of neurons [45] as well
as the morphology of their mature form [6] are frequently
investigated, particularly with an eye to clues about ab-
normalities caused by malformations or diseases. In both
cases there is a need for objective and quantitative mea-
sures in order to account for the variety of morphological
features found in neuronal cells.

In this work we have advanced recent work on
Minkowski functionals [18,19], which proposed a frame-
work to characterize the morphology of neurons using
simple algorithms based on integral geometry. We have
described an extension of the scalar Minkowski function-
als to higher-rank Minkowski valuations. These valuations
have been successfully explored elsewhere [26] and suggest
themselves as an effective tool for characterizing point dis-
tributions. Whereas the scalar functionals are invariant
under motions in Euclidean space, the higher-rank valua-
tions trade invariance for sensitivity to cell symmetry.

We have first performed a multi-scale analysis on the
base of the higher-rank Minkowski valuations, i.e. we
showed the valuations or some simple functions of them
such as the asymmetry as a function of dilation scale. We
have then suggested several ways to obtain global mea-

sures that integrate information from all scales. As far as
our limited set of cells is concerned, we could find sig-
nificant differences (as well as similarities) between the
prototypes for each category of cells. Note that the very
definitions of those classes are based upon physiological,
classical geometric measurements and take into account
the localization in the tissue of the cell sample. On the
contrary, our measures are purely geometric and do not
take into account the cells’ localizations.

We have also carried out a comparison between the
traditional Sholl analysis, the scalar Minkowski function-
als and the new, extended framework presented in this
paper. For each prototype cell, we have produced a set
of four distorted images (for details see above). We have
then analyzed these images with the different methods and
thus obtained several morphometric descriptions of the
cells. Each morphometric description has been subject to
a Ward’s clustering algorithm. The dendrograms obtained
in this way (see Figs. 19 and 20) show the robustness of
some of our new measures, as far as a special type of mor-
phological distortion is concerned. We found some mea-
sures based upon the scalar Minkowski functionals only,
and based upon the Minkowski valuations more broadly,
that do a better job in regaining the original cell with
their distortions than the Sholl analysis does. The den-
drograms obtained also suggest different taxonomies of the
cell types. This indicates that the higher-rank Minkowski
valuations provide a complementary perspective on the
cells. It is still open, however, whether the differences
found between the prototypes will be characteristic of all
ganglionary neurons in a statistical sense and whether the
taxonomies will prove stable for larger data sets.

Altogether, the comparison to other approaches shows
that Minkowski valuations provide a framework for em-
bedding and systematically extending measures previ-
ously known. Due to their axiomatic characterization,
Minkowski valuations display information that is complete
in a specific and well-defined way. Therefore, Minkowski
valuations suggest a natural way of extending previously
known characteristics. By embedding these characteris-
tics in integral geometry we also deepen our general un-
derstanding of morphometry. Methods from integral ge-
ometry might even help to find more efficient algorithms
for calculating previously known measures. Altogether
Minkowski valuations significantly enrich our tool-box for
neuromorphometry in two and three dimensions.
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Gruber, J.M. Wills (Birkhäuser, Basel, 1983), pp. 360–412
31. S. Alesker, Ann. of Math. 149, 977 (1999)
32. H. Hadwiger, C. Meier, Mathematische Nachrichten 56,

361 (1974)
33. C. Beisbart, K. Mecke, unpublished Manuscript 2005
34. C. Beisbart, Ph.D. thesis, Ludwig–Maximilians–

Universität München (2001),
http://edoc.ub.uni-muenchen.de/

archive/00000483/01/Beisbart Claus.pdf

35. K. Mecke, T. Buchert, H. Wagner, Astronomy and
Astrophysics 288, 697 (1994)

36. M. Pu, D.M. Berson, T. Pan, The journal of Neuroscience
14 (1994)

37. D.M. Berson, M. Pu, E.V. Famiglietti, Journal of
Comparative Neurology 399, 269 (1998)

38. R.C.C. et al., Real-Time Imaging 8, 213 (2002)
39. D. Fenchel, C.R. Acad. Sci. Paris 203, 647 (1936), in

French
40. A.D. Alexandrov, Matem. Sb. SSSR 2, 1205 (1937), in

Russian, summary in German
41. J. Schmalzing, T. Buchert, A.L. Melott, V. Sahni, B.S.

Sathyaprakash, S.F. Shandarin, ApJ 526, 568 (1999)
42. L. da F. Costa, R.M.C. Jr., Shape Analysis and

Classification: Theory and Practice (CRC, 2000)
43. N. Schmitz, Iwarp: Gimp Plugin, www.gimp.org
44. J.H. Ward, J. Am. Stat. Ass. 58, 236 (1963)
45. K.L. Whitford, P. Dijkhuizen, F. Polleux, A. Ghosh, Annu.

Rev. Neurosci. 25, 127 (2002)


